Homework due Monday, September 29

Definition and Notation: Let Γ be any set of formulae. Recall that the notation $\Gamma \models \phi$ means that, for every structure \mathcal{M} such that $\mathcal{M} \models \Gamma$, it also holds that $\mathcal{M} \models \phi$. The notation $\Gamma \vdash \phi$ means that there is a proof (using some standard notion of "proof system") such that every line of the proof is either an element of Γ or else follows from some earlier lines according to the inference rules of the proof system, where the final line in the proof is ϕ .

Gödel's Completeness Theorem says that $\Gamma \models \phi$ implies $\Gamma \vdash \phi$.

2. Using Gödel's Completeness Theorem, prove that if, for every finite subset $\Gamma' \subset \Gamma$ there is a structure $\mathcal{M}_{\Gamma'}$ such that $\mathcal{M}_{\Gamma'} \models \Gamma'$, then there is a structure \mathcal{M} such that $\mathcal{M} \models \Gamma$. (Hint: If there is not a structure \mathcal{M} such that $\mathcal{M} \models \Gamma$, then $\Gamma \models (\phi \land \neg \phi)$ for any formula ϕ .)

3. Consider some set of axioms Γ_1 such that $\mathbb{N} \models \Gamma_1$. Let **c** be a new constant. Consider $\Gamma_2 = \Gamma_1 \cup \{\mathbf{c} > 1, \mathbf{c} > 1 + 1, \mathbf{c} > 1 + 1 + 1, ... \}$. Prove that there is a structure \mathcal{M} such that $\mathcal{M} \models \Gamma_2$.

 \mathcal{M} is called a *non-standard model of arithmetic*. Note that \mathcal{M} contains elements that are larger than any "standard" integer.

4. Let Γ be some set of axioms that are satisfied by the Natural Numbers \mathbb{N} (where, in particular, Γ should require that, for every x and y such that $x \neq y$, either x < y or y < x, and Γ should be "reasonable" in the sense that there is a program that can tell if something is an axiom or not). Let $\phi(x, y, c, t)$ be a formula (in the signature of the first-order theory of \mathbb{N}) such that, for every tuple of closed terms ($\mathbf{x}, \mathbf{y}, \mathbf{c}, \mathbf{t}$), it holds that $\mathbb{N} \models \phi(\mathbf{x}, \mathbf{y}, \mathbf{c}, \mathbf{t})$ if and only if \mathbf{c} is a number whose binary representation encodes a sequence of \mathbf{t} configurations C_1, C_2, \ldots, C_t such that C_1 encodes the initial configuration of Turing machine $M_{\mathbf{x}}$ on input \mathbf{y} , and C_t is a halting configuration. (The existence of such a formula ϕ follows from some proofs of Gödel's *incompleteness* theorem, which shows that there is a Turing machine $M_{\mathbf{x}}$ and an input \mathbf{y} such that $M_{\mathbf{x}}$ does not halt on input \mathbf{y} , but there is no proof from Γ of the (true) statement $\neg \exists t \exists c \phi(\mathbf{x}, \mathbf{y}, c, t) -$ because otherwise there would be an algorithm to solve the halting problem.) Let ψ denote the statement $\exists t \exists c \phi(\mathbf{x}, \mathbf{y}, c, t)$.

Show that there must be a non-standard model \mathcal{M} (that also satisfies Γ) such that $\mathcal{M} \models \psi$.